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Abstract

The present note deals with the derivation of the characteristic equation of an axially vibrating viscoelastic rod

(Kelvin–Voigt model), carrying a tip mass. Further, it is attempted to represent this continuous system by an ‘‘equivalent’’

spring-damper-mass system. Then, the ‘‘first’’ eigenvalues of these systems are calculated and tabulated for a wide range of

the nondimensional mass parameter.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, in the context of a project study, the need arose to obtain the eigenvalues of an axially vibrating
viscoelastic rod (Kelvin–Voigt model) carrying a tip mass. It has been necessary to establish and solve the
characteristic equation of the system under consideration, after a futile search for it and its solution in the
literature, even hoping to find a table of eigenvalues for particular ranges of dimensionless values of the mass
and the damping parameters.

After having derived and solved the characteristic equation, it is attempted to represent the system
mentioned above by an equivalent spring-damper-mass system. The present note presents some results of these
efforts.

Although it is acknowledged that the contribution of this study does not solve a very complex problem, it is
nevertheless thought that the characteristic equation established and the numerical results collected in tables
can be helpful to design engineers working in this field.

2. Theory

The mechanical system under consideration is shown in Fig. 1. It consists of an axially vibrating viscoelastic
rod carrying a tip mass M. It is assumed that its viscoelastic properties fit the Kelvin–Voigt model. The axial
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Fig. 1. Axially vibrating viscoelastic rod with a tip mass.
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rigidity, length, mass per unit length and viscoelastic constant of the rod material are EA, L, m and a,
respectively.

Equation of motion of the viscoelastic rod can be found in the literature [1] as

EA u00ðx; tÞ þ aAu00
d
ðx; tÞ �m €uðx; tÞ ¼ 0, (1)

where u(x,t) represents the axial displacement at the location x and t is time. Primes and dots denote partial
derivatives with respect to position coordinate x and time t, as usual. The corresponding boundary conditions
are shown to be

uð0; tÞ ¼ 0, (2)

EA u0ðL; tÞ þ aAu00
d
ðL; tÞ þM €uðL; tÞ ¼ 0, (3)

where the first is obvious and the second expresses the force balance at the tip.
Assuming a solution in the form

uðx; tÞ ¼ UðxÞelt, (4)

where UðxÞ and l denote the amplitude function and an eigenvalue, both being complex in general, and
substitution into Eqs. (1)–(3) leads to the following characteristic equation:

l̄ðel̄L þ e�l̄LÞ þ
Ml2

EAþ aAl
ðel̄L � e�l̄LÞ ¼ 0, (5)

where

l̄
2
¼ ml2=ðEAþ aAlÞ. (6)

The characteristic equation in Eq. (5) can be written as

e
¯̄l þ e�

¯̄l þ aM
¯̄lðe

¯̄l � e�
¯̄lÞ ¼ 0, (7)

where

¯̄l ¼ l̄L, (8)

aM ¼M=mL (9)

are introduced.
The characteristic equation above can further be brought into one of the three alternative forms given

below:

cosh ¯̄lþ aM
¯̄l sinh ¯̄l ¼ 0, (10)

1þ e2
¯̄l þ aM

¯̄lðe2
¯̄l � 1Þ ¼ 0, (11)

1þ aM
¯̄l tanh ¯̄l ¼ 0. (12)
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After having obtained the parameter ¯̄l by solving numerically one of the characteristic equations above, in
order to obtain the eigenvalue l, relationship (6) has to be used in conjunction with Eq. (8), which leads to the
following quadratic equation for l=ō0:

ðl=ō0Þ
2
� ā ¯̄l

2
ðl=ō0Þ �

¯̄l
2
¼ 0. (13)

Here,

ō2
0 ¼ EA=mL2, (14)

ā ¼ aA=ðmL2ō0Þ (15)

are introduced where ā represents the nondimensional viscoelastic constant of the rod, in short, the
nondimensional damping parameter.

The solution of the quadratic equation in Eq. (13) yields the nondimensional eigenvalue of the vibrational
system as

ðl=ō0Þ1;2 ¼
ā ¯̄l

2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ā2 ¯̄l

4

4
þ ¯̄l

2

s
. (16)

As a verification of the characteristic equations obtained, it is in order to consider the special case ā ¼ 0, i.e.,
the undamped rod-case. In the undamped case, it is reasonable to expect the eigenvalue l in the form

l ¼ �io, (17)

where o represents the eigenfrequency of the undamped system and i denotes the imaginary unit, as usual. In
this case, using Eqs. (6) and (8), it can be shown that the parameter ¯̄l reduces to

¯̄l ¼ ib̄, (18)

where the nondimensional frequency parameter b̄ is introduced via

b̄
2
¼ o2mL2=EA. (19)

Substitution of Eq. (18) into Eq. (10) gives the frequency equation in the following form:

coshðib̄Þ þ aM ðib̄Þ sinhðib̄Þ ¼ 0. (20)

Making use of the formulas [2]

coshði yÞ ¼ cos y; sinhði yÞ ¼ i sin y

results in the well-known frequency equation of an axially vibrating elastic rod, carrying a tip mass [3]

tan b̄ ¼
1

aM b̄
, (21)

which justifies formula (16) with Eqs. (10)–(12), at least for the special case of ā ¼ 0.
As in Refs. [4,5] one can think of representing the vibrational system in Fig. 1 by an ‘‘equivalent’’ single

degree-of-freedom spring-damper-mass system. It is reasonable to make use of the simplified model in Fig. 2
for this purpose, where

k ¼ EA=L; d ¼ aA=L. (22)

d, is the ratio of the mass to be added to the tip, to the mass of the rod itself.
The constant d is not yet known and will be determined requiring that the ‘‘first’’ eigenvalue of the

continuous system in Fig. 1 is equal to the eigenvalue of the model in Fig. 2. Before proceeding further, it is in
order to represent the system in Fig. 2 in terms of the nondimensional parameters as in Fig. 3, where aM and ā
were already defined in Eqs. (9) and (15), respectively.

The characteristic equation of the model in Fig. 3 is simply

ðaM þ dÞl002 þ āl00 þ 1 ¼ 0, (23)
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Fig. 2. Equivalent spring-damper-mass system for obtaining the ‘‘first’’ eigenvalue of the system in Fig. 1.
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Fig. 3. Nondimensionalized version of the system in Fig. 2.
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which gives the solution

l00 ¼
�ā�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ā2 � 4ðaM þ dÞ

p
2ðaM þ dÞ

. (24)

Requiring

l00 ¼ l0, (25)

where the dimensionless ‘‘first’’ eigenvalue of the continuous system, i.e., l=ō0 in Eq. (16) is denoted shortly as
l0, leads to

aM þ d ¼ �
1þ āl0

l02
. (26)

Numerical evaluations reveal that the right side is independent of ā such that it can be set ā ¼ 0, corresponding
to the undamped case. On the other hand, in the undamped case, one sees from Eqs. (16) and (18) that

l0 ¼ l=ō0 ¼ �
¯̄l ¼ �ib̄1, (27)

where b̄1 is to be determined by solving Eq. (21) numerically. Hence, Eq. (26) can be reformulated as

d ¼
1

b̄
2

1

� aM . (28)

In conjunction with Fig. 3, expression (28) can be interpreted in the manner that the factor d by which the
own mass of the axially vibrating rod must be multiplied in order to be taken into account is the same as in the
undamped case. b̄1 denotes the first root of Eq. (21) with respect to b̄, for the corresponding aM value.

Making use of the approach in Ref. [4] for larger aM values, the first root of Eq. (21) can be approximated
by

b̄1 � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aM þ 1=3

p
, (29)
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which, when substituted into Eq. (28) yields

d ¼ 1=3. (30)

Let us return to the eigenvalue pair given in Eq. (24) which can be rewritten as

l00 ¼
�ā

2ðaM þ dÞ
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðaM þ dÞ � ā2

p
2ðaM þ dÞ

. (31)

Recalling the fact noticed previously, that d does not depend on ā, it is seen from above that the real part of
the eigenvalues of the damped system depends upon ā linearly, whereas the imaginary part decreases, as ā gets
larger.

3. Numerical evaluations

In Table 1, for a wide range of the nondimensional mass parameter aM , the corresponding ¯̄l values are listed
which are the ‘‘first’’ solutions of the transcendental equations (10)–(12). For the sake of completeness and
also for the benefit of design engineers working in this field, in Table 2, the first dimensionless eigenfrequency
able 1

he ‘‘first’’ roots of the transcendental equations (10)–(12) for a wide range of the nondimensional mass parameter aM

M ¯̄l

71.570796i

.001 71.569227i

.002 71.567661i

.003 71.566098i

.004 71.564538i

.005 71.562982i

.006 71.561428i

.007 71.559878i

.008 71.558330i

.009 71.556786i

.01 71.555245i

.02 71.540006i

.03 71.525076i

.04 71.510452i

.05 71.496129i

.06 71.482103i

.07 71.468370i

.08 71.454924i

.09 71.441759i

.1 71.428870i

.2 71.313838i

.3 71.219952i

.4 71.142227i

.5 71.076874i

.6 71.021114i

.7 70.972911i

.8 70.930757i

.9 70.893519i

70.860334i

70.653271i

70.547161i

70.480094i

70.432841i

70.397248i

70.369197i

70.346354i
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Table 1 (continued )

aM ¯̄l

9 70.327285i

10 70.311053i

15 70.255365i

20 70.221760i

25 70.198676i

30 70.181566i

35 70.168230i

40 70.157458i

45 70.148521i

50 70.140952i

55 70.134433i

60 70.128742i

65 70.123718i

70 70.119239i

75 70.115214i

80 70.111571i

85 70.108253i

90 70.105214i

95 70.102418i

100 70.099834i

200 70.070652i

300 70.057703i

400 70.049979i

500 70.044706i

600 70.040813i

700 70.037787i

800 70.035348i

900 70.033327i

1000 70.031618i

Table 2

The first roots of transcendental equation (21) for the same range of aM as in Table 1

aM b̄1

0 1.570796

0.001 1.569227

0.002 1.567661

0.003 1.566098

0.004 1.564538

0.005 1.562982

0.006 1.561428

0.007 1.559878

0.008 1.558330

0.009 1.556786

0.01 1.555245

0.02 1.540006

0.03 1.525076

0.04 1.510452

0.05 1.496129

0.06 1.482103

0.07 1.468370

0.08 1.454924

0.09 1.441759

0.1 1.428870

0.2 1.313838

M. Gürgöze, S. Zeren / Journal of Sound and Vibration 294 (2006) 388–396 393
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Table 2 (continued )

aM b̄1

0.3 1.219952

0.4 1.142227

0.5 1.076874

0.6 1.021114

0.7 0.972911

0.8 0.930757

0.9 0.893519

1 0.860334

2 0.653271

3 0.547161

4 0.480094

5 0.432841

6 0.397248

7 0.369197

8 0.346354

9 0.327285

10 0.311053

15 0.255365

20 0.221760

25 0.198676

30 0.181566

35 0.168230

40 0.157458

45 0.148521

50 0.140952

55 0.134433

60 0.128742

65 0.123718

70 0.119239

75 0.115214

80 0.111571

85 0.108253

90 0.105214

95 0.102418

100 0.099834

200 0.070652

300 0.057703

400 0.049979

500 0.044706

600 0.040813

700 0.037787

800 0.035348

900 0.033327

1000 0.031618
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parameters b̄1 of the undamped system, i.e., the first roots of Eq. (21) are collected for the same aM range. It is
not surprising that b̄1 values are, due to Eq. (18), simply the ¯̄l values in Table 1, without the imaginary unit,
where the minus signs are omitted.

The eigenvalues of the continuous system in Fig. 1 and discrete model in Fig. 3 are given in Table 3 for
ā ¼ 0:1 and 1, respectively, which are complex, due to the presence of damping.

The complex numbers l00:1 in the second column are eigenvalues of the continuous system in Fig. 1 for
ā ¼ 0:1, determined from Eq. (16). The complex numbers l000:1 which are the roots of the characteristic
equation (23), given in Eq. (24), i.e., eigenvalues of the discrete model, are exactly the same as l00:1. Therefore,
they are not repeated in a separate column. The corresponding eigenvalues for ā ¼ 1 are denoted as l01 and l001,
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Table 3

Collection of the ‘‘first’’ eigenvalues of the system in Figs. 1–3 and d values for the same range of aM as previously; ā ¼ 0:1 and ā ¼ 1

aM l00:1 ¼ l000:1 l01 ¼ l001 d

0 �0.12337071.565944i �1.23370170.972309i 0.405285

0.001 �0.12312471.564389i �1.23123770.972897i 0.405096

0.002 �0.12287871.562838i �1.22878170.973478i 0.404907

0.003 �0.12263371.561289i �1.22633270.974050i 0.404720

0.004 �0.12238971.559744i �1.22389070.974614i 0.404533

0.005 �0.12214671.558201i �1.22145670.975170i 0.404348

0.006 �0.12190371.556662i �1.21902970.975718i 0.404163

0.007 �0.12166171.555126i �1.21660970.976258i 0.403978

0.008 �0.12142071.553593i �1.21419770.976791i 0.403795

0.009 �0.12117971.552063i �1.21179270.977315i 0.403612

0.01 �0.12093971.550536i �1.20939470.977831i 0.403430

0.02 �0.11858171.535434i �1.18580970.982586i 0.401653

0.03 �0.11629371.520636i �1.16292870.986638i 0.399949

0.04 �0.11407371.506138i �1.14073270.990048i 0.398315

0.05 �0.11192071.491937i �1.11920170.992870i 0.396747

0.06 �0.10983271.478028i �1.09831570.995155i 0.395243

0.07 �0.10780671.464407i �1.07805570.996949i 0.393798

0.08 �0.10584071.451069i �1.05840270.998293i 0.392410

0.09 �0.10393371.438008i �1.03933570.999226i 0.391077

0.1 �0.10208371.425219i �1.02083570.999783i 0.389795

0.2 �0.08630871.311000i �0.86308570.990583i 0.379317

0.3 �0.07441471.217680i �0.74414170.966714i 0.371915

0.4 �0.06523471.140363i �0.65234170.937621i 0.366470

0.5 �0.05798371.075312i �0.57982970.907445i 0.362324

0.6 �0.05213471.019782i �0.52133770.877999i 0.359073

0.7 �0.04732870.971759i �0.47327870.850037i 0.356463

0.8 �0.04331570.929748i �0.43315470.823824i 0.354324

0.9 �0.03991970.892627i �0.39918870.799391i 0.352541

1 �0.03700970.859537i �0.37008770.776666i 0.351034

2 �0.02133870.652923i �0.21338270.617439i 0.343220

3 �0.01496970.546956i �0.14969270.526286i 0.340182

4 �0.01152570.479956i �0.11524570.466057i 0.338570

5 �0.00936870.432739i �0.09367670.422583i 0.337572

6 �0.00789070.397170i �0.07890370.389333i 0.336894

7 �0.00681570.369134i �0.06815370.362852i 0.336402

8 �0.00599870.346302i �0.05998170.341121i 0.336030

9 �0.00535670.327241i �0.05355870.322873i 0.335738

10 �0.00483870.311015i �0.04837770.307268i 0.335503

15 �0.00326170.255344i �0.03260670.253275i 0.334792

20 �0.00245970.221747i �0.02458970.220393i 0.334431

25 �0.00197470.198667i �0.01973670.197694i 0.334214

30 �0.00164870.181559i �0.01648370.180816i 0.334068

35 �0.00141570.168224i �0.01415170.167634i 0.333964

40 �0.00124070.157453i �0.01239770.156969i 0.333886

45 �0.00110370.148517i �0.01102970.148111i 0.333825

50 �0.00099370.140948i �0.00993470.140601i 0.333776

55 �0.00090470.134430i �0.00903670.134129i 0.333736

60 �0.00082970.128739i �0.00828770.128475i 0.333702

65 �0.00076570.123715i �0.00765370.123481i 0.333674

70 �0.00071170.119237i �0.00710970.119027i 0.333650

75 �0.00066470.115212i �0.00663770.115023i 0.333629

80 �0.00062270.111569i �0.00622470.111397i 0.333610

85 �0.00058670.108251i �0.00585970.108094i 0.333594

90 �0.00055470.105213i �0.00553570.105069i 0.333580

95 �0.00052470.102417i �0.00524570.102284i 0.333567

100 �0.00049870.099832i �0.00498370.099709i 0.333555

200 �0.00025070.070651i �0.00249670.070608i 0.333444

M. Gürgöze, S. Zeren / Journal of Sound and Vibration 294 (2006) 388–396 395
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Table 3 (continued )

aM l00:1 ¼ l000:1 l01 ¼ l001 d

300 �0.00016670.057703i �0.00166570.057679i 0.333407

400 �0.00012570.049979i �0.00124970.049964i 0.333389

500 �0.00010070.044706i �0.00099970.044695i 0.333378

600 �0.00008370.040813i �0.00083370.040805i 0.333370

700 �0.00007170.037787i �0.00071470.037781i 0.333365

800 �0.00006270.035348i �0.00062570.035342i 0.333361

900 �0.00005670.033327i �0.00055570.033323i 0.333358

1000 �0.00005070.031617i �0.00050070.031614i 0.333356
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respectively, and given in the third column of Table 3. The nondimensional factor d in the last column is
calculated from Eq. (28).

The exact agreement of l0 and l00 values in each column justifies the fact that the single degree-of-freedom
model in Fig. 3 yields the ‘‘first’’ eigenvalue of the continuous system in Fig. 1 exactly.

As stated in the previous section, the d value is the same, irrespective of ā. It is clearly seen that d approaches
1/3 if aM tends to infinity. An inspection of the second and third columns reveals further that the absolute
values of the real parts of the eigenvalues in the third column are ten times of those in the second column, as
expected. Further, the imaginary parts of the corresponding eigenvalues in case of ā ¼ 1 are less than those for
ā ¼ 0:1, this trend being more apparent for smaller aM values.

4. Conclusion

The present note is concerned first with the derivation of the characteristic equation of an axially vibrating
viscoelastic rod obeying the Kelvin–Voigt model, carrying a tip mass. Then, the eigenvalues of the mentioned
system are calculated and tabulated for a wide range of the nondimensional mass parameter. Further, it is
attempted to represent the original continuous system by an ‘‘equivalent’’ spring-damper-mass system. It is
hoped that especially the characteristic equation derived and then the tables given can be helpful to design
engineers working in this area.
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